
Recitation Class 10 for VG101

Date: 2012 / 12 / 03

Wang Qian

C++ V.S. C

• Library:

• Do not forget: using namespace std;

C C++

iostream

fstream

string

math cmath

string cstring

C++ V.S. C

• Data type:

• Type casting:

– More like a function.

– double pi = 3.14;

– int a = int(pi);

• string:

– #include <string>

– Operators: = and +

• bool:

– Only take a memory of 1 byte.

– Have two values: true and false.

C++ V.S. C

• Input and output:

– cin >> var >> var;

– cout << var << var;

– getline(cin,str); (#include <string>)

– e.g. printf("The %d-th Fibonacci Number is %d\n",6,8);

 cout << "The “ << 6

 << "-th Fibonacci Number is “

 << 8 << endl;

C++ V.S. C

• Pass by reference

• Recall how we design the swap function in C.

• In C++, we do it in this way:

– swap(x,y);

– void swap(int &x,int &y)

 {

 int t = x;

 x = y;

 y = t;

 }

POP V.S. OOP

• POP:

– Procedure Oriented Programing

– More like our thinking strategy

• OOP:

– Object Oriented Programming

– More related to the real world

– It is more efficient for complicated programing

– Features:

• Abstractness

• Data Hiding and Encapsulation

• Reusability

• Polymorphism

• Inheritance

POP V.S. OOP

• Let’s focus on the following example:

– Suppose that there are several students taking the course

VG101. The final grade will depend on assignments, labs and

exams. Of course, they have different weights. We want to use a

program to assist us at the end of the semester with dealing with

the data.

– Now, Let’s have a look at the two different thinking strategies,

POP and OOP.

– Notice that we are talking about the thinking strategy instead of

programming itself!

POP

• What procedures are required in this task?

– Get the total number of students.

– Get the name of the students.

– Get the ID of the students.

– Get the grade for labs.

– Get the grade for assignments.

– Get the grade for exams.

– Get the weights for labs, assignments and exams.

– Decide the final grade.

– Decide the rank of the students according to their final grade.

POP

• How to implement these procedures?

• We can use several function.

– void getTot(int *n);

– void getName(char *name, const int n);

– void getID(char *id, const int n);

– void getGrade(const int idx, int *item);

– void getWeight(int *w);

– void calcFinal(int *fnl, const int *w, const int n);

– void sort(struct Student *stu, const int n);

POP

• What kind of data structure is preferred?

– We may use a structure.

– struct Class {

int labW,assignW,midW,finalW;

 };

– struct Student {

 char *name, * id;

 int lab[10],assignment[10],mida,midb,final;

 int grade;

 };

OOP

• In Object Oriented Programming, we consider the simple

objects first, then to the more specific organization, such

as functions.

• This is called “bottom-up programming”.

• What objects are required in this task?

– Course and student.

• What kind of properties do they have?

– Course: name, students, weights.

– Student: name, id, grades.

OOP

• How to implement these objects?

• Let’s consider the class Student first.

– class Student {

 string name,id;

 int lab[3],assign[3],mid,final;

 double grade;

 public:

 Student() {}; // constructor

 ~Student() {}; // destructor

 };

– We still need some functions.

OOP

• What about the class Course?

– class Course {

 string name;

 int tot;

 double labW,assignW,midW,finalW;

 Student *stu;

 public:

 Course() {};

 ~Course() {};

 };

– Of course, we still need some functions, too.

– It is better to put the prototype in a header file, and the definition

in a separate source file. (Not required in this course)

OOP

• The complete version can be found on SAKAI.

• Key words about the data hiding:

• private:

– Never accessible to other functions or classes.

• public:

– Accessible to other functions or classes.

• protected:

– Will be introduced in the future (if needed).

OOP

• Calculation is not interfered by the user.

– E.g. sortGrade();

• Interactive mode between user and computer

– Initialization

– E.g. vg101.setCourse();

– Update

– E.g. vg101.updateData();

– Report

– E.g. vg101.getData();

OOP

• Data hiding still works for member functions.

– class Course {

 …

 void sortGrade();

 public:

 void setCourse(void);

 void updateData(void);

 void getData(void);

 };

• Prototype is similar to what we saw before.

OOP

• Use “::” to show the corresponding class.

– E.g. void Course::updateData(void)

 void Student::setStudent(void)

• In the same function, we can use the unqualified name.

• Also, we can use the private member functions in it.

– E.g. void Course::getData(void) {

 sortGrade();

 ……

 }

Inheritance

• Today, only the concept will be introduced.

• bass class v.s. derived class

• E.g.

– ElementaryMember:

• 10% discount

• One membership point for consuming one RMB.

• Free drinks.

– AdvancedMember:

• All the rights for elementary member.

• Free snacks.

• Physical fitness test once a month.

Polymorphism

• Still, only the concept will be introduced.

• Polymorphic member function method.

• E.g.

– ElementaryMember:

• 10% discount

• One membership point for consuming one RMB.

• Free drinks.

– AdvancedMember:

• 20% discount

• Three membership points for consuming one RMB.

• Free drinks.

• Free snacks.

• Physical fitness test once a month.

