Recitation Class 08 for VG101

Date: 2012/11/13
N Wang Qlan ;

U SO NR

OO @\ W
| X\ QRO BQT\T\\ A\
‘ ﬂﬂ& S \&\k\&\ \
VRS

Take your flash disk during the lab time.

MID 02
— The mid-exam 2 will come next week!

LAB 06

— Not difficult at all, since what you learnt not so much last week.

HWKO5

— Please pay enough attention when you submit your hwk.
— Possible HC violation again.

One of the most difficult parts in this course!!!
Practice makes perfect.
Be patient to understand the whys and wherefores.

Always ask yourself the following question:
— Where does it point to ?

— What is the value in it?

Declaration
— data_type *name_1,"name_2,...;

Initialization
name = &x; (x should have the same data_type as *name)
name = (data_type*)malloc(sizeof(data_type)*length)
You should include the standard library.
Do not forget to free the memory by using free(name).
When the length is a variable, it still works.
Notice that you can never do this:
Int arr[n]; (even in C++)

Call the value
— Use *name to call the value stored in the memory it points to.

What is the value of a after each step?
— Int x[5] ={0,1,2,3,4},a,*pt;
pt = &x[0];
a = ++*pt;
a = *++pt;

a = *pt++;
a = (*py++;
Recall the importance of brackets.

Close relation between pointer and array.

— Int x[5] ={0,1,2,3,4},*pt;

— pt=x; Il pt = &x[0O];

— *pt =*(x + 3); Il *pt = Xx[3];

Recall the importance of the array boundary.

Notice:

— Itis valid for us to use: pt++;

— But illegal for use to use: x++;

— We cannot modify any constant value.

* Notice the difference between char array.
— char *stra = "abcdefg";
— char stra[] = "abcdefg";
— *stra="'@";

 Under which circumstance it is valid?

 Still follow the rule that we cannot modify constant value.

——> a b . c d e f gl\0

Pass by Reference

e Pass by value

wold swap(int a, int b)
|

int t = a;

a = b;

b= 1;

return;

}
Pass by reference

wold swap (int *a, int *b)
d

int t = #a&;

3 = *h;

*b = t;

return,

swap (x, ¥) ;

swap Lhx, bv)

 What does the following function do?
— void func(char *s,char *t)
=
- while (*s++ = *t++);

=

* The following format is better. Why?
— void func(char *s,const char *t)
=
= while (*s++ = *t++);

& |

Cannot return an array. Use the pointer instead.

Which one is meaningful? Though both are valid...
(lifespan)

char *func() char *func()

{ i
char *s = "Helle, world!™; char =[] = "Hello, world!”™;
return =; return =;

} h

Sometimes, it seems to work well, but trust me that the
result really depends on the compiler and the state of
system!

* You should return a pointer pointing to:
— (1) a static variable
— (2) a variable with dynamic allocated memory
— (3) global variable
— (4) constant variable

Pointer to Pointer

« Compare that with two-dimensional array (n=5 m=4)

v = [int**)mallocin * m * sizeof (int));
+[0] = {int*)mallocim * zizeaof (int));
for (1 =1; 1 < n; i+t

v[i] = w[i-1] + m:

—>

Class in C++ will be similar.

With structure, we will find the power of pointer.
struct type _name {
data_type member;

I

struct type_name var_name;

For me, | like the following way more:
— typedef struct {

— data_type member;

— } type_name,;

— type_name var_name;

« Considering such a structure:
— typedef struct type name {
— struct type_name *fore,*next;
- Int data;
— } type_name;

How to use this to form a loop structure?
More data structure will be covered in Ve280.

You can find the source code of BST | introduced during
last RC, if your are interested Iin it and have spare time.

| also upload the source code of merge sort. That is also
not required but only for your interest.

