
Recitation Class 03 for VG101
Date: 2012 / 10 / 08

Wang Qian

hwk & lab feedback

• HWK 01
– Wrong names (may lead to failure in compiling)
– Wrong units
– Usage of semi-colon (;)
– Wrong answer in Problem 3 and Problem 4
– No steps in Problem 1

• LAB 01
– Two methods in Problem 1 (vector or for loop)
– Both strategies can work in LAB 02
– About the optional problem

String

• Single quotation marks.
• Use sprintf() to record a formatted data in a string.

– Placeholder & Conversion Specification (see the next slide)
– Similar to the usage of fprintf()!

• Try the following functions!
– str2num(), num2str()
– hex2dec(), dec2hex()
– size(), length()
– strcmp(), strcat()
– strfind(), findstr()

String

• Placeholder
– str = sprintf('%d %o %x',1234,1234,1234)
– str = sprintf('%f %e',0.000001234,0.000001234)
– str = sprintf('%c%c%c%c%c%c', 'H', 'e', 'l', 'l', 'o', '! ')

• Conversion Specification
– \n new line
– \\ back slash
– '' single quotation mark
– %% percent sign
Note: regard them as characters

Flow Chart

• A diagram showing the steps and procedures of a
certain algorithm

• Basic symbols:
– Start / end: round rectangle
– Input / output: parallelogram
– Condition: diamond
– General steps: rectangle
– Flow: arrow
– Connector: circle

Flow Chart

• Example: calculate the n-th Fibonacci number
• z Start

Input n

f(1) = 1

f(2) = 1

1

1

i = 3

i <= n

f(i) = f(i-1) + f(i-2)

T

Output f(n)

2

2

F

End

i = i + 1

for statement

• Let’s have a review at first.
• for < scalar > = < vector >
 expression
 end
• It can also be nested.
• for < scalar 1> = < vector >
 for < scalar 2> = < vector >
 expression
 end % the end of the inner loop
 end % the end of the outer loop

for statement

• Flow chart:

i = initial

i <= end

expression

T

F

i = i + step

if statement

• if (condition 1)
 expression1
 elseif (condition 2) % optional
 expression2
 ……
 else (condition 3) % optional
 expression3
 end
• Pay attention to the structure of nested if statement.

if statement

• Flow chart:

expression1

T

F
condition

2
condition

1

F

T

expression2 expression3

Boolean calculation

• Only two values involved.
– 1 represents TRUE
– 0 represents FALSE
– Relation operators may also be useful
– > , < , >= , <= , == , ~=

• Boolean Operator
 A B A & B A | B ~A

1 1 1 1 0
1 0 0 1 0
0 1 0 1 1
0 0 0 0 1

Boolean calculation

• Difference between & and &&, | and ||?
– Elementwise V.S. Short-circuit
– Try [1 2 3 4] & [0 1 -1 0.9]
– All numbers other than 0 means true.

• They have different priorities.
~ > relation operator > & > | > && > ||

• A useful strategy: use brackets!
• In C or C++: ^ means xor (more details in the future)

Naive Primality Test

• Determine whether n is prime or not.
• Other faster tests exist (Miller-Rabin or AKS)
• Naive primality test is the easiest
• We only use for and if here
• Strategy:

– Check whether n is divisible by any integer not smaller than 2
and not larger than n-1

– How to optimize this algorithm?

while loop

• while (condition)
 expression
 end
• The same as for loop, it can also be nested.
• Useful commands: break / continue / return
• Comparison with for loop:

– for loop: discrete and given iteration
– while loop: unclear iteration

while loop

• Flow chart:

condition

expression

T

F

Greatest Common Divisor

• GCD is very useful in the math world, for example:
– Multiplicative inverse and RSA algorithm
– Chinese Remainder Theorem

• Euclid’s Algorithm:
– Given two positive integers a and b.
– We have: gcd(a,b) = gcd(b,mod(a,b))
– When b is equal to 0, gcd(a,b) = a

• Binary Algorithm (get rid of division, efficient for big num):
– When a is equal to b, gcd(a,b) = a
– When a and b are both even, gcd(a,b) = gcd(a/2,b/2)
– When a is even, b is odd, gcd(a,b) = gcd(a/2,b)
– When a and b are both odd, gcd(a,b) = gcd(a-b,b)

switch statement

• Useful condition: variables representing discrete values
– total number of the students V.S. current temperature

• switch < scalar >
 case {< value11>, < value12>, < value13>}
 expression1
 case {< value21>, < value22>, < value23>}
 expression2
 ……
 otherwise
 expression3
 end

switch statement

• Useful condition: variables representing discrete values
– total number of the students V.S. current temperature

• switch < scalar >
 case {< value11>, < value12>, < value13>}
 expression1
 case {< value21>, < value22>, < value23>}
 expression2
 ……
 otherwise
 expression3
 end

switch statement

• Flow chart (different from that in C or C++):

expression1

T

F
scalar in

case2
scalar in

case1

F

T

expression2 expression3

Function

• We have already see the power of the built-in functions.
• function [return values] = name(arguments)
 expression
 return
• Lifespan of variables (will be illustrated later soon)
• e.g.

– flag = prime_check(n);
– n = encrypt(’Hello! VG101!’);
– x = gcd(a,b);
– [x,y] = gcd_lcm(a,b);

Debug

• Not only useful in MATLAB
• Tips:

As a beginner, I recommend you to record all kinds of mistakes
which you have made together in a list. This list can be a reminder
for you. I listed some common mistakes from my experience.
– Always initialize the variables
– Never compare real numbers directly
– Check the constants
– 1==a instead of a==1
– Similar variable “i” and “j”
– Zero denominator
– Save different versions
– ……

Debug

• Run: F5
• Halt: shift + F5
• Break point: F12
• Step over: F10
• Step into: F11
• Step out: shift + F11
• Show the variables on the command window
• Also use “%” instead of deleting the commands

Debug

• The following is only my habit of debug.
 1. Static debug
 2. Compile the code
 3. Check some easy test cases
 4. Make use of the debugger (if mistakes found in step 3)
 5. Check some special test cases
 6. Make use of the debugger (if mistakes found in step 5)
 7. Delete the temporary variables and command for debug

• Example: bubble sort and debug
• How to optimize the bubble sort so that it can halt as

soon as the list is in the expected order?

Function

• Easy problem:
• Design a function for bubble sort and optimized bubble

sort. This is a very important algorithm.
– If you are interested in sorting algorithms, you can try to build

functions for insertion sort, selection sort, bucket sort and
counting sort. You may find their principles easily online, since
they are all very classic. Also, they are all among the easiest
sorting algorithms.

• Design functions for naive primality test, gcd algorithms,
introduced in the previous slides.

• Design a function to find the lcm of two positive integers.
– Notice the fact that lcm(a,b) * gcd(a,b) = ab

Function

• Challenging problem: (Beyond this course)
• Sieve of Eratosthenes is an algorithm enable us to find

all the primes not larger than n.
– Label all the integers as primes.
– Check m from 2 to sqrt(n).
– For each m, label m*m, m*(m+1), … , m*[n/m] as composite

number.

• Design a function for sieve of Eratosthenes.

	Recitation Class 03 for VG101
	hwk & lab feedback
	String
	String
	Flow Chart
	Flow Chart
	for statement
	for statement
	if statement
	if statement
	Boolean calculation
	Boolean calculation
	Naive Primality Test
	while loop
	while loop
	Greatest Common Divisor
	switch statement
	switch statement
	switch statement
	Function
	Debug	
	Debug
	Debug
	Function
	Function

