
Recitation Class 11 for VG101

Date: 2012 / 12 / 10

Wang Qian

Inheritance

• When should we use inheritance?

– To show the “is-a” relation instead of “has-a” relation.

– For the “has-a” relation, we can use implement of composition.

• Principles:

– There are five important SOLID principles in OOP.

– Today, I want you to understand two of them.

– Liskov Substitution Principle (LSP)

– Dependency Inversion Principle (DIP)

Liskov Substitution Principle

• Liskov Substitution Principle:

– Let B be the base type and D be the derived type of B.

– ∀𝑥 ∈ 𝐵: 𝑓(𝑥) ⇒ ∀𝑦 ∈ 𝐷: 𝑓(𝑦)

• Classical Problem

– Is it a good idea to derive Circle from Ellipse?

– Is it a good idea to derive Ostrich from Bird?

– Use LSP to explain the reason.

Derive a Class

• How to implement inheritance in C++?

– class DerivedClass : mode BaseClass

• Note:

– Derived class stored the members and the member functions of

the base class, though the accessibility depends on the mode.

– Derived class should have its own constructor.

– You can add more members or member functions to the derived

class if needed.

• What kind of member is accessible outside both the

base class and the derived class?

– public member only

Inheritance Mode

inheritance

mode

base public

member

base protected

member

Base private

member

public derived public

member

derived protected

member

not accessible

protected derived protected

member

derived protected

member

not accessible

private derived private

member

derived private

member

not accessible

• Initializer list can only be used in the constructor.

– BaseClass::BaseClass(type x)

 {

 mem = x

 }

– DerivedClass::DerivedClass (type x,type y):BaseClase(y),mem(x)

 {

 }

– DerivedClass::DerivedClass (type x,type y):BaseClass(y)

 {

 mem = x;

 }

Initializer List

• Remember the following relations:

– A pointer of the base class can point to its derived object.

– A reference of the base class can refer its derived object.

– A pointer of the derived class cannot point to its base object.

– A reference of the derived class cannot refer its base object.

• This can be used to explained a function in the lecture:

• Pointer or reference of the base class cannot use the

member function added in its derived object.

Reference and Pointer

Polymorphism

• Two tasks:

– Redefine the member function of the base class in the derived

class.

– Use the virtual method.

• Implement of the virtual method:

– Add the key word “virtual” just at the beginning of the member

function prototype in the base class.

– The characteristic of virtual method will appear for the pointer or

the reference of an object.

Virtual Method

• Characteristic:

– Without the key word “virtual”, program will choose the running

member function according to the class of the reference or the

pointer itself.

– With the key word “virtual”, program will choose the running

member function according to the class of the object associating

with the reference or the pointer.

– Use this characteristic to explain why virtual destructor is needed?

– Consider, in the example code, what will happen when such a

statement as “delete member[i];” is implemented.

Virtual Method

• This will be a clearer example.

– BaseClass object1;

 DerivedClass object2;

 BaseClass &ref1 = object1;

 BaseClass &ref2 = object2;

 ref1.memFunc(); // Always use BaseClass::memFunc

 ref2.memFunc(); // Use DerivedClass::memFunc if virtual

Array of Base Class Pointer

• Impossible to store data with different types in one array.

• But, base pointer can point to different derived class.

– E.g.

– BaseClass *obj [MAX];

– obj[i] = new DerivedClass;

– (*obj[i]).memFunc();

– obj[i]->memFunc();

Dependency Inversion Principle

• Dependency Inversion Principle:

– Detailed type should depend on abstract type, but abstract type

should not depend on detailed type.

– Either high-level and low-level type should not depend on the

other, but should depend on abstract type instead.

• For example:

– Show the relationship of the following classes: DellPC, SonyPC,

PC, KingstonMemory, SamsungMemory, Memory, SeagateDisk,

ToshibaDisk, Disk

Dependency Inversion Principle

DellPC SonyPC

PC

KingstonMemory

SamsungMemory

Memory

SeagateDisk

ToshibaDisk

Disk

– Black arrows mean inheritance.

– Blue lines mean implement of composition.

– Yellow blocks mean the abstract classes.

Abstract Base Class

• It is a kind of base class containing pure virtual function.

– The virtual function ended by “=0”.

– The pure virtual functions can only be used in base class.

• An object of abstract base class can never be built up.

– For example, in the code I provided, Employee is an abstract

base class. Therefore, you cannot use declare an object with the

type of Employee.

