Recitation Class 10 for VG101

Date: 2012 /12 /03
N Wang Qlan ;

U SO NR

OO @\ W
| X\ QRO BQT\T\\ A\
‘ ﬂﬂ& S \&\k\&\ \
VRS

Library:

C++
lostream
fstream
string
math cmath
string cstring

Do not forget: using namespace std;

Data type:
Type casting:

— More like a function.
— double pi = 3.14;

— Int a = int(pi);

string:
— #include <string>
— Operators: = and +

bool:
— Only take a memory of 1 byte.
— Have two values: true and false.

 Input and output:
cin >> var >> valr,
cout << var << var;
getline(cin,str); (#include <string>)
e.g. printf("The %d-th Fibonacci Number is %d\n",6,8);

cout << "The “<< 6
<< "-th Fibonacci Number is “
<< 8 << endl;

« Pass by reference
« Recall how we design the swap function in C.

* In C++, we do it in this way:

— swap(x,y);
— void swap(int &x,int &y)

{
Intt = Xx;
X =Y,
y=¢

« POP:

— Procedure Oriented Programing
— More like our thinking strategy

« OOP:

— ODbject Oriented Programming

— More related to the real world

— It is more efficient for complicated programing
— Features:
» Abstractness
Data Hiding and Encapsulation
Reusability
Polymorphism
Inheritance

» Let's focus on the following example:

— Suppose that there are several students taking the course
VG101. The final grade will depend on assignments, labs and
exams. Of course, they have different weights. We want to use a
program to assist us at the end of the semester with dealing with
the data.

— Now, Let's have a look at the two different thinking strategies,
POP and OOP.

— Notice that we are talking about the thinking strategy instead of
programming itself!

* What procedures are required in this task?
Get the total number of students.
Get the name of the students.
Get the ID of the students.
Get the grade for labs.

Get the grade for assignments.

Get the grade for exams.

Get the weights for labs, assignments and exams.

Decide the final grade.

Decide the rank of the students according to their final grade.

* How to implement these procedures?

« We can use several function.
void getTot(int *n);
void getName(char *name, const int n);
void getID(char *id, const int n);

void getGrade(const int idx, int *item);

void getWeight(int *w);

void calcFinal(int *fnl, const int *w, const int n);
void sort(struct Student *stu, const int n);

« What kind of data structure is preferred?
— We may use a structure.

— struct Class {
int labW,assignW,midW,finalW;

i

— struct Student {
char *name, * id;
int lab[10],assignment[10],mida,midb,final;
Int grade;

In Object Oriented Programming, we consider the simple
objects first, then to the more specific organization, such

as functions.

This is called “bottom-up programming”.
What objects are required in this task?

— Course and student.

What kind of properties do they have?
— Course: name, students, weights.
— Student: name, id, grades.

 How to implement these objects?

« Let's consider the class Student first.
— class Student {
string name,id;
int lab[3],assign[3],mid,final;
double grade;
public:
Student() {}; I/ constructor
~Student() {}; // destructor

-

— We still need some functions.

« What about the class Course?
— class Course {
string name;
int tot;
double labW,assignW,midW.,finalW,

Student *stu;
public:
Course() {};
~Course() {};
%
— Of course, we still need some functions, too.

— It is better to put the prototype in a header file, and the definition
In a separate source file. (Not required in this course)

The complete version can be found on SAKAI.
Key words about the data hiding:

private:

— Never accessible to other functions or classes.

public:

— Accessible to other functions or classes.

protected:
— Wil be introduced in the future (if needed).

« Calculation is not interfered by the user.
- E.g. sortGrade();

 Interactive mode between user and computer
— Initialization
E.Q. vgl01.setCourse();

Update

E.Q. vgl01l.updateData();
Report

E.Q. vgl01l.getData();

Data hiding still works for member functions.
— class Course {

void sortGrade();
public:

void setCourse(void);
void updateData(void);
void getData(void);

%
Prototype is similar to what we saw before.

“, "

» Use “.:" to show the corresponding class.
- E.g. void Course::updateData(void)
void Student::setStudent(void)

« In the same function, we can use the ungqualified name.

« Also, we can use the private member functions in it.

- E.g. void Course::getData(void) {
sortGrade();

« Today, only the concept will be introduced.
* bass class v.s. derived class
 E.Q.

— ElementaryMember:
* 10% discount

* One membership point for consuming one RMB.
* Free drinks.
— AdvancedMember:
 All the rights for elementary member.
* Free snacks.
» Physical fitness test once a month.

« Still, only the concept will be introduced.
* Polymorphic member function method.
she 0]
— ElementaryMember:
« 10% discount
* One membership point for consuming one RMB.
» Free drinks.
— AdvancedMember:

« 20% discount
Three membership points for consuming one RMB.
Free drinks.
Free snacks.
Physical fithess test once a month.

